AskDefine | Define gearbox

Dictionary Definition

gearbox n : the shell (metal casing) in which a train of gears is sealed [syn: gear case]

User Contributed Dictionary

English

Etymology

gear + box

Pronunciation

Noun

  1. That part of an car's transmission containing the train of gears, and to which the gear lever is connected.

Translations

Extensive Definition

Using the principle of mechanical advantage, transmissions provide a torque-speed conversion (commonly known as "gear reduction" or "speed reduction") from a higher speed motor to a slower but more forceful output.

Explanation

Early transmissions included the right-angle drives and other gearing in windmills, horse-powered devices, and steam engines, in support of pumping, milling, and hoisting.
Most modern gearboxes either reduce an unsuitable high speed and low torque of the prime mover output shaft to a more stable lower speed with higher torque, or do the opposite and provide a mechanical advantage (i.e increase in torque) to allow higher forces to be generated. Some of the simplest gearboxes merely change the physical direction in which power is transmitted.
Many typical automobile transmissions include the ability to select one of several different gear ratios. In this case, most of the gear ratios (simply called "gears") are used to slow down the output speed of the engine and increase torque. However, the highest gears may be "overdrive" types that increase the output speed.

Uses

Gearboxes have found use in a wide variety of different—often stationary—applications.
Transmissions are also used in agricultural, industrial, construction, mining and automotive equipment. In addition to ordinary transmission equipped with gears, such equipment makes extensive use of the hydrostatic drive and electrical adjustable-speed drives.

Simple

The simplest transmissions, often called gearboxes to reflect their simplicity (although complex systems are also called gearboxes in the vernacular), provide gear reduction (or, more rarely, an increase in speed), sometimes in conjunction with a right-angle change in direction of the shaft (typically in helicopters, see picture). These are often used on PTO-powered agricultural equipment, since the axial PTO shaft is at odds with the usual need for the driven shaft, which is either vertical (as with rotary mowers), or horizontally extending from one side of the implement to another (as with manure spreaders, flail mowers, and forage wagons). More complex equipment, such as silage choppers and snowblowers, have drives with outputs in more than one direction.
Regardless of where they are used, these simple transmissions all share an important feature: the gear ratio cannot be changed during use. It is fixed at the time the transmission is constructed.
For transmission types that overcome this issue, please see Continuously Variable Transmission, also known as CVT.

Multi-ratio systems

Many applications require the availability of multiple gear ratios. Often, this is to ease the starting and stopping of a mechanical system, though another important need is that of maintaining good fuel economy.

Automotive basics

The need for a transmission in an automobile is a consequence of the characteristics of the internal combustion engine. Engines typically operate over a range of 600 to about 7000 revolutions per minute (though this varies, and is typically less for diesel engines), while the car's wheels rotate between 0 rpm and around 1800 rpm.
Furthermore, the engine provides its highest torque outputs approximately in the middle of its range, while often the greatest torque is required when the vehicle is moving from rest or traveling slowly. Therefore, a system that transforms the engine's output so that it can supply high torque at low speeds, but also operate at highway speeds with the motor still operating within its limits, is required. Transmissions perform this transformation.
Most transmissions and gears used in automotive and truck applications are contained in a cast iron case, though sometimes aluminum is used for lower weight. There are three shafts: a mainshaft, a countershaft, and an idler shaft.
The mainshaft extends outside the case in both directions: the input shaft towards the engine, and the output shaft towards the rear axle (on rear wheel drive cars). The shaft is suspended by the main bearings, and is split towards the input end. At the point of the split, a pilot bearing holds the shafts together. The gears and clutches ride on the mainshaft, the gears being free to turn relative to the mainshaft except when engaged by the clutches.

Manual

Manual transmission come in two basic types:
  • a simple but rugged sliding-mesh or unsynchronized / non-synchronous system, where straight-cut spur gear sets are spinning freely, and must be synchronized by the operator matching engine revs to road speed, to avoid noisy and damaging "gear clash",
  • and the now common constant-mesh gearboxes which can include non-synchronised, or synchronized / synchromesh systems, where diagonal cut helical (and sometimes double-helical) gear sets are constantly "meshed" together, and a dog clutch is used for changing gears. On synchromesh 'boxes, friction cones or "synchro-rings" are used in addition to the dog clutch.
The former type is commonly found in many forms of racing cars, older heavy-duty trucks, and some agricultural equipment.
Manual transmissions dominate the car market outside of North America. They are cheaper, lighter, usually give better performance, and fuel efficiency (although the latest sophisticated automatic transmissions may yield results slightly closer to the ones yielded by manual transmissions). It is customary for new drivers to learn, and be tested, on a car with a manual gear change. In Poland all cars used for testing (and because of that, virtually all those used for instruction as well) have a manual transmission. In Japan, Philippines, Germany, the Netherlands, New Zealand, Austria, the UK , Ireland
Usual jamming includes: worn teeth, damages caused by a faulty chain, damage due to thermal dilatation, broken teeth due to excessive use of power when pedalling and lubrication flaw caused by negligency.

Uncommon types

Continuously variable

The Continuously Variable Transmission (CVT) is a transmission in which the ratio of the rotational speeds of two shafts, as the input shaft and output shaft of a vehicle or other machine, can be varied continuously within a given range, providing an infinite number of possible ratios.
The continuously variable transmission (CVT) should not be confused with the Infinitely Variable Transmission (IVT) (See below). Generally, the usage of the term 'CVT' is not used for infinitely variable transmissions because most CVT's are not IVT's.
The other mechanical transmissions described above only allow a few different gear ratios to be selected, but this type of transmission essentially has an infinite number of ratios available within a finite range. The continuously variable transmission allows the relationship between the speed of the engine and the speed of the wheels to be selected within a continuous range. This can provide even better fuel economy if the engine is constantly running at a single speed. The transmission is in theory capable of a better user experience, without the rise and fall in speed of an engine, and the jerk felt when changing gears.

Infinitely variable

The IVT is a specific type of CVT that has an infinite range of input/output ratios in addition to its infinite number of possible ratios; this qualification for the IVT implies that its range of ratios includes a zero output/input ratio that can be continuously approached from a defined 'higher' ratio. A zero output implies an infinite input, which can be continuously approached from a given finite input value with an IVT. [Note: remember that so-called 'low' gears are a reference to low ratios of output/input, which have high input/output ratios that are taken to the extreme with IVT's, resulting in a 'neutral', or non-driving 'low' gear limit.]
Most (if not all) IVT's result from the combination of a CVT with an epicyclic gear system (which is also known as a planetary gear system) that facilitates the subtraction of one speed from another speed within the set of input and planetary gear rotations. This subtraction only needs to result in a continuous range of values that includes a zero output; the maximum output/input ratio can be arbitrarily chosen from infinite practical possibilities through selection of extraneous input or output gear, pulley or sprocket sizes without affecting the zero output or the continuity of the whole system. Importantly, the IVT is distinguished as being 'infinite' in its ratio of high gear to low gear within its range; high gear is infinite times higher than low gear. The IVT is always engaged, even during its zero output adjustment.
The term 'infinitely variable transmission' does not imply reverse direction, disengagement, automatic operation, or any other quality except ratio selectabilty within a continuous range of input/output ratios from a defined minimum to an undefined, 'infinite' maximum. This means continuous range from a defined output/input to zero output/input ratio.

Electric variable

The Electric Variable Transmission(EVT) is a transmission that achieves CVT action and in addition can use separate power inputs to produce one output. An EVT usually is executed in design with an epicyclic differential gear system (which is also known as a planetary gear system). The epicyclic differential gearing performs a "power-split" function, directly connecting a portion of the mechanical power directly through the transmission and splitting off a portion for subsequent conversion to electrical power via a motor/generator. Hence, the EVT is called a Power Split Transmission (PST) by some.
The directly connected portion of the power travelling through the EVT is referred to as the "mechanical path". The remaining power travels down the EVT's "electrical path". That power may be recombined at the output of the transmission or stored for later, more opportune use via a second motor/generator (and energy storage device) connected to the transmission output.
The pair of motor/generators forms an Electric Transmission in its own right, but at a lower capacity, than the EVT it is contained within. Generally the Electric Transmission capacity within the EVT is a quarter to a half of the capacity of the EVT. Good reasons to use an EVT instead of an equivalently-sized Electrical transmission is that the mechanical path of the EVT is more compact and efficient than the electrical path.
The EVT is the essential method for transmitting power in some hybrid vehicles, enabling an Internal Combustion Engine (ICE) to be used in conjunction with motor/generators for vehicle propulsion, and having the ability to control the portion of the mechanical power used directly for propelling the vehicle and the portion of mechanical power that is converted to electric power and recombined to drive the vehicle.
The EVT and power sources are controlled to provide a balance between the power sources that increases vehicle fuel economy while providing advantageous performance when needed. The EVT may also be used to provide electrically generated power to charge large storage batteries for subsequent electric motor propulsion as needed, or to convert vehicle kinetic energy to electricity through 'regenerative braking' during deceleration. Various configurations of power generation, usage and balance can be implemented with a EVT, enabling great flexibility in propelling hybrid vehicles.
The Toyota single mode hybrid and General Motor 2 Mode hybrid are production systems that use EVTs. The Toyota system is in the Prius, Highlander, and Lexus RX400h and GS450h models. The GM system is the Allison Bus hybrid powertrains and are in the Tahoe and Yukon models. The Toyota system uses one power-split epicyclic differential gearing system over all driving conditions and is sized with an electrical path rated at approximately half the capacity of the EVT. The GM system uses two different EVT ranges: one designed for lower speeds with greater mechnical advantage, and one designed for higher speeds, and the electrical path is rated at approximately a quarter of the capacity of the EVT. Other arrangements are possible and applications of EVT's are growing rapidly in number and variety.
EVT's are capable of continuously modulating output/input speed ratios like mechanical CVT's, but offer the distinct difference and benefit of being able to also apportion power from two different sources to one output.

Hydrostatic

Hydrostatic transmissions transmit all power hydraulically, using the components of hydraulic machinery. There is no solid coupling of the input and output. One half of the transmission is a hydraulic pump and the other half is a hydraulic motor, or hydraulic cylinder. Hydrostatic drive systems are used on excavators, lawn tractors, forklifts, winch drive systems, heavy lift equipment, agricultural machinery, etc.
Hydraulic drive systems can be used as an extra transmission between motor and f.i. wheels.

Hydrodynamic

If the hydraulic pump and/or hydraulic motor are not hydrostatic, but hydrodynamic, then the transmission can be called hydrodynamic. The pump and motor can consist of rotating vanes without seals. The pump and motor can be placed in reasonable proximity. The transmission ratio can be made to vary by means of additional rotating vanes, an effect similar to varying the pitch of an airplane propeller.
The torque converter in most American cars is a hydrodynamic transmission, placed ahead of the automatic transmission.
It was possible to drive the Dynaflow transmission without shifting the mechanical gears.
Hydrodynamic transmissions tend to be inefficient due to energy losses in the fluid.

Electric

Electric transmissions convert the mechanical power of the engine(s) to electricity with electric generators and convert it back to mechanical power with electric motors. Electrical or electronic adjustable-speed drive control systems are used to control the speed and torque of the motors. If the generators are driven by turbines, such arrangements are called turbo-electric. Likewise installations powered by diesel-engines are called diesel-electric. Diesel-electric arrangements are used on many railway locomotives.

References

gearbox in Czech: Převodovka
gearbox in German: Getriebe
gearbox in Spanish: Caja de cambios
gearbox in French: Boîte de vitesses
gearbox in Korean: 변속기
gearbox in Indonesian: Persneling
gearbox in Italian: Cambio (meccanica)
gearbox in Hebrew: הילוכים
gearbox in Dutch: Versnellingsmechaniek
gearbox in Japanese: トランスミッション
gearbox in Norwegian: Girkasse
gearbox in Polish: Skrzynia biegów
gearbox in Portuguese: Caixa de velocidades
gearbox in Russian: Трансмиссия
gearbox in Finnish: Vaihteisto
gearbox in Swedish: Kraftöverföring
gearbox in Chinese: 变速箱
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1